Abstract
Abstract
The band gap and mechanical control ability of two-dimensional materials largely determine the application value of two-dimensional devices in optical and electronic properties, so the bandgap controllability of two-dimensional materials broadens the application range of multi-functional devices. In the layered van der Waals (vdW) material AgInP2S6, the band gap can be adjusted by the number of layers and flexible strain, and the few layers AgInP2S6 have discrete band gap values, which are also relevant for optoelectronic applications. In the strain range of up to 2.7% applied, the band gap can be adjusted, and the film is relatively stable under strain. We further analyzed the physical mechanism of flexible strain band gap regulation and found that strain-regulation reduced the band gap and increased the chemical bond length. These studies open up new opportunities for the future development of vdW material photoelectric resonators represented by AgInP2S6, and have important reference value.
Funder
National Natural Science Foundation of China
Subject
Electrical and Electronic Engineering,Mechanical Engineering,Mechanics of Materials,General Materials Science,General Chemistry,Bioengineering
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献