Production and characterization of biocompatible nanofibrous scaffolds made of β-sitosterol loaded polyvinyl alcohol/tragacanth gum composites

Author:

Albukhaty SalimORCID,Al-Karagoly Hassan,Allafchian Ali RezaORCID,Jalali Seyed Amir Hossein,Al-Kelabi Thair,Muhannad Mustafa

Abstract

Abstract Electrospun polyvinyl alcohol (PVA) and tragacanth gum (TG) were used to develop nanofibrous scaffolds containing poorly water-soluble β-Sitosterol (β-S). Different concentrations and ratios of the polymeric composite including β-S (10% w v−1) in PVA (8% w v−1) combined with TG (0.5 and 1% w v−1) were prepared and electrospun. The synthesis method includes four electrospinning parameters of solution concentration, feeding rate, voltage, and distance of the collector to the tip of the needle, which are independently optimized to achieve uniform nanofibers with a desirable mean diameter for cell culture. The collected nanofibers were characterized by SEM, FTIR, and XRD measurements. A contact angle measurement described the hydrophilicity of the scaffold. MTT test was carried out on the obtained nanofibers containing L929 normal fibroblast cells. The mechanical strength, porosity, and deterioration of the scaffolds were well discussed. The mean nanofiber diameters ranged from 63 ± 20 nm to 97 ± 46 nm. The nanofibers loaded with β-S were freely soluble in water and displayed a remarkable biocompatible nature. The cultured cells illustrated sheet-like stretched growth morphology and penetrated the nanofibrous pores of the PVA/β-S/TG scaffolds. The dissolution was related to submicron-level recrystallization of β-S with sufficient conditions for culturing L929 cells. It was concluded that electrospinning is a promising technique for poorly water-soluble β-S formulations that could be used in biomedical applications.

Publisher

IOP Publishing

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Mechanics of Materials,General Materials Science,General Chemistry,Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3