Abstract
Abstract
Fiber-shaped supercapacitors (FSCs) are promising energy storage devices for portable and wearable electronics due to their miniaturized size, flexibility, and knittability. Despite the significant progress in this area, it is still a challenge to develop large capacitance and high energy density FSCs for practical applications. In this work, a hybrid fiber composed of reduced graphene oxide and polyaniline nanoparticles (r-PANI-GOF) is synthesized via in situ synthesis of polyaniline nanoparticles both on the surface and inside of graphene fibers. The areal specific capacitance of a single r-PANI-GOF electrode is as large as 1755 mF cm−2 in the three-electrode system. The r-PANI-GOF hybrid fibers were also used as electrodes for making an all-solid-state FSCs. This whole device has a specific areal capacitance of up to 481 mF cm−2 and a high areal energy density of 42.76 μWh cm−2. The hybrid fiber electrodes with a high capacitance, and excellent flexibility may become new candidates for the development of fiber-shaped high-performance energy storage devices.
Funder
Shanghai Municipal Education Commission
Natural Science Foundation of Shanghai
Science and Technology Commission of Shanghai Municipality
Subject
Electrical and Electronic Engineering,Mechanical Engineering,Mechanics of Materials,General Materials Science,General Chemistry,Bioengineering
Cited by
19 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献