High‐Entropy Engineering Reinforced Surface Electronic States and Structural Defects of Hierarchical Metal Oxides@Graphene Fibers toward High‐Performance Wearable Supercapacitors

Author:

Hu Haowei12,Yang Chao12,Chen Fangyuan12,Li Jiahui12,Jia Xiaoli12,Wang Yuting12,Zhu Xiaolin12,Man Zengming12,Wu Guan12ORCID,Chen Wenxing12

Affiliation:

1. National Engineering Lab for Textile Fiber Materials and Processing Technology Zhejiang Sci‐Tech University Hangzhou 310018 P. R. China

2. Zhejiang Provincial Innovation Center of Advanced Textile Technology Zhejiang Sci‐Tech University Shaoxing 312000 P. R. China

Abstract

AbstractConstruction advanced fibers with high Faradic activity and conductivity are effective to realize high energy density with sufficient redox reactions for fiber‐based electrochemical supercapacitors (FESCs), yet it is generally at the sacrifice of kinetics and structural stability. Here, a high‐entropy doping strategy is proposed to develop high‐energy‐density FESCs based on high‐entropy doped metal oxide@graphene fiber composite (HE‐MO@GF). Due to the synergistic participation of multi‐metal elements via high‐entropy doping, the HE‐MO@GF features abundant oxygen vacancies from introducing various low‐valence metal ions, lattice distortions, and optimized electronic structure. Consequently, the HE‐MO@GF maintains sufficient active sites, a low diffusion barrier, fast adsorption kinetics, improved electronic conductivity, enhanced structural stability, and Faradaic reversibility. Thereinto, HE‐MO@GF presents ultra‐large areal capacitance (3673.74 mF cm−2) and excellent rate performance (1446.78 mF cm−2 at 30 mA cm−2) in 6 M KOH electrolyte. The HE‐MO@GF‐based solid‐state FESCs also deliver high energy density (132.85 µWh cm−2), good cycle performance (81.05% of capacity retention after 10,000 cycles), and robust tolerance to sweat erosion and multiple washing, which is woven into the textile to power various wearable devices (e.g., watch, badge and luminous glasses). This high‐entropy strategy provides significant guidance for designing innovative fiber materials and highlights the development of next‐generation wearable energy devices.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Jiangsu Province

Natural Science Foundation of Zhejiang Province

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3