Chemical-free transfer of patterned reduced graphene oxide thin films for large area flexible electronics and nanoelectromechanical systems

Author:

Patil Nikhil,Gupta Aparna,Jaiswal Manu,Dutta SoumyaORCID

Abstract

Abstract In this paper, a wet-dry hybrid technique to transfer patterned reduced graphene oxide (rGO) thin film to arbitrary substrates at predetermined locations without using any chemicals is reported. The transfer process involves water-assisted delamination of rGO, followed by dry transfer to an acceptor substrate using viscoelastic stamp. Patterned reduced graphene oxide films are transferred to silicon dioxide (SiO2/Si) substrate to begin with. Subsequently, the method is deployed to transfer rGO to different polymer substrates such as poly(methyl methacrylate) (PMMA), and crosslinked poly(4-vinylphenol) (c-PVP), which are commonly used as gate dielectric in flexible electronic applications. The credibility of the transfer process with precise spatial positioning on the target substrate leads to fabrication of freely suspended reduced graphene oxide membrane towards nanoelectromechanical systems (NEMS) based devices such as nanomechanical drum resonators.

Publisher

IOP Publishing

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Mechanics of Materials,General Materials Science,General Chemistry,Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3