Operando photoelectron spectroscopy analysis of graphene field-effect transistors

Author:

Lu Yi-YingORCID,Yang Yu-Lun,Chuang Pin-Yi,Jhou Jie,Hsu Jui-Hung,Hsieh Shang-Hsien,Chen Chia-Hao

Abstract

Abstract In this study, operando photoelectron spectroscopy was used to characterize the performance of graphene field-effect transistors under working conditions. By sweeping the back-gate voltages, the carrier concentration of the graphene channel on the 150 nm Si3N4/Si substrate was tuned. From the C1s core level spectra acquired under the application of different gate voltages, the binding energy shifts caused by electric-field effects were obtained and analyzed. Together with the C1s peak shape information and the photoluminescence spectrum of the Si3N4/Si substrate, the presence of local potential across the x-ray beam spot associated with defects and gate leakage current in amorphous Si3N4 was identified. The presence of defects in Si3N4/Si substrate could not only screen the partial electric field generated by the back gate but also serve as long-range scattering centers to the carriers, thus affecting charge transport in the graphene channel. Our findings will help further investigate the dielectric/graphene interface properties and accelerate the utilization of graphene in real device applications.

Funder

Ministry of Science and Technology, Taiwan

Publisher

IOP Publishing

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Mechanics of Materials,General Materials Science,General Chemistry,Bioengineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3