Abstract
Abstract
The van der Waals (vdW) heterostructures formed by stacking layered two-dimensional materials can improve the performance of materials and provide more applications. In our paper, six configurations of AlN/MoS2 vdW heterostructures were constructed, the most stable structure was obtained by calculating the binding energy. On this basis, the effect of external vertical strain on AlN/MoS2 heterostructure was analyzed, the calculated results show that the optimal interlayer distance was 3.593 Å and the band structure was modulated. Then the h-BN intercalation was inserted into the AlN/MoS2 heterostructure, by fixing the distance between h-BN and AlN or MoS2, two kinds of models were obtained. Furthermore, the electronic properties of AlN/MoS2 heterostructure can be regulated by adding h-BN intercalation layer and adjusting its position. Finally, the optical properties show that the absorption coefficient of AlN/MoS2 heterostructure exhibits enhancement characteristic compared with that of the individual monolayers. Meantime, compared with AlN/MoS2, the AlN/h-BN/MoS2 shows a redshift effect and the light absorption peak intensity increased, which indicated that h-BN intercalation layer can be used to regulate the electronic and optical properties of AlN/MoS2 heterostructure.
Funder
Natural Science Foundation of Anhui Province
University Natural Science Research Project of Anhui Province
National Natural Science Foundation of China
Subject
Electrical and Electronic Engineering,Mechanical Engineering,Mechanics of Materials,General Materials Science,General Chemistry,Bioengineering
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献