van der Waals epitaxy of 2D h-AlN on TMDs by atomic layer deposition at 250 °C

Author:

Chang Shu-Jui1ORCID,Wang Shin-Yuan2ORCID,Huang Yu-Che1ORCID,Chih Jia Hao2ORCID,Lai Yu-Ting2ORCID,Tsai Yi-Wei3ORCID,Lin Jhih-Min3ORCID,Chien Chao-Hsin2ORCID,Tang Ying-Tsan4ORCID,Hu Chenming15ORCID

Affiliation:

1. International College of Semiconductor Technology, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan

2. Department of Electronics Engineering, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan

3. National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan

4. Department of Electrical Engineering, National Central University, Taoyuan 320317, Taiwan

5. Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, California 94720, USA

Abstract

We report the demonstration of growing two-dimensional (2D) hexagonal-AlN ( h-AlN) on transition metal dichalcogenide (TMD) monolayers (MoS2, WS2, and WSe2) via van der Waals epitaxy by atomic layer deposition (ALD). Having atomically thin thickness and high theoretical carrier mobility, TMDs are attractive semiconductors for future dense and high-performance 3D IC, and 2D hexagonal boron nitride ( h-BN) as a gate dielectric is known to significantly improve TMD device performance. However, h-BN growth requires 1000 °C temperature that is not compatible with CMOS fabrication, and ALD deposition of any high-k 2D insulator on TMD continues to be an elusive goal. The epitaxial 2D layered h-AlN by low-temperature ALD is characterized by synchrotron-based grazing-incidence wide-angle x-ray scattering and high-resolution transmission electron microscopy. In addition, we demonstrate the feasibility of using layered h-AlN as an interfacial layer between WS2 and ALD HfO2. The significantly better uniformity and smoothness of HfO2 than that directly deposited on TMD are desirable characteristics for TMD transistor applications.

Publisher

AIP Publishing

Subject

Physics and Astronomy (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3