Abstract
Abstract
We investigate the strain evolution and relaxation process as function of increasing lattice mismatch between the GaAs core and surrounding In
x
Ga1−x
As shell in core–shell nanowire heterostructures grown on Si(111) substrates. The dimensions of the core and shell are kept constant whereas the indium concentration inside the shell is varied. Measuring the
22
4
¯
and
2
2
¯
0
in-plane Bragg reflections normal to the nanowire side edges and side facets, we observe a transition from elastic to plastic strain release for a shell indium content x > 0.5. Above the onset of plastic strain relaxation, indium rich mounds and an indium poor coherent shell grow simultaneously around the GaAs core. Mound formation was observed for indium contents x = 0.5 and 0.6 by scanning electron microscopy. Considering both the measured radial reflections and the axial 111 Bragg reflection, the 3D strain variation was extracted separately for the core and the In
x
Ga1−x
As shell.
Funder
Alexander von Humboldt-Stiftung
Deutsche Forschungsgemeinschaft
Subject
Electrical and Electronic Engineering,Mechanical Engineering,Mechanics of Materials,General Materials Science,General Chemistry,Bioengineering
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献