Design of n+-base width of two-terminal-electrode vertical thyristor for cross-point memory cell without selector

Author:

Lee Byoung-SeokORCID,Kim Min-Won,Kim Ji-Hun,Yoo Sang-Dong,Shim Tae-Hun,Park Jea-GunORCID

Abstract

Abstract The n+-base width of a two-terminal vertical thyristor fabricated with n++(top-emitter)-p+(base)-n+(base)-p++(bottom-emitter) epitaxial Si layers was designed to produce a cross-point memory cell without a selector. Both the latch-up and latch-down voltages increased linearly with the n+-base width, but the voltage increase slope of the latch-up was 2.6 times higher than that of the latch-down, and the memory window increased linearly with the n+-base width. There was an optimal n+-base width that satisfied cross-point memory cell operation; i.e. ∼180 nm, determined by confirming that the memory window principally determined the condition of operation as a cross-point memory cell (i.e. one half of the latch-up voltage being less than the latch-down voltage and a sufficient voltage difference existing between the latch-up and latch-down voltages). The vertical thyristor designed with the optimal n+-base width produced write/erase endurance cycles of ∼109 by sustaining a memory margin (I on /I off ) of 102, and the cross-point memory cell array size of 1024 K sustained a sensing margin of 99 %, which is comparable with that of current dynamic random-access memory (DRAM). In addition, in the cross-point memory cell array, a ½ bias scheme (i.e. a memory array size of 1024 K for 0.02 W of power consumption) resulted in lower power consumption than a 1 / 3 bias scheme (i.e. a memory array size of 256 K for 0.02 W of power consumption).

Funder

Ministry of Trade, Industry and Energy

Publisher

IOP Publishing

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Mechanics of Materials,General Materials Science,General Chemistry,Bioengineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3