A simplified mid-infrared anti-resonant chalcogenide fiber with fewest resonant peaks

Author:

Wang Xian-Ge,Jiao Kai,Zhao Zheming,Liang Xiaolin,Xia Kai,Liang Yachen,Bai Shenchuang,Shen Xiang,Nie Qiuhua,Wang Rongping,Wang XunsiORCID

Abstract

Abstract High-power laser delivery in the mid-infrared via hollow-core fibers is attractive, but it is too difficult to be fabricated using chalcogenide glasses. Here, we designed a mid-infrared hollow-core anti-resonant chalcogenide fiber (HC-ARCF) with a simplified Kagome cladding micro-structure for the first time. Then, the fiber was firstly fabricated through a precision mechanical drilling and pressured fiber drawing method. Ultra-thin walls of 2 μm in the fiber lead to the fewest resonance peaks in the 2–5 μm among all reported HC-ARCFs. All the fundamental mode, the second-order mode, tube mode and node mode in the fiber were excited and observed at 1550 nm. The power and spectral properties of the core and cladding of HC-ARCF are studied for the first time. The fiber can deliver high-power of 4.84 W without damage with core-coupling, while the threshold of the node in the cladding is only 3.5 W. A broadening of the output spectrum from 1.96 to 2.41 μm due to the high nonlinearity at the node was successfully observed under short-pulse laser pumping at 2 μm. The potentials of the fiber used for mid-infrared high-power laser delivery via core, or nonlinear laser generation via node, were thus demonstrated.

Funder

the Natural Science Foundation of China

173, Zhejiang Provincial Natural Science Foundation of China

Ten-Thousands Talents Program of Zhejiang Province

Leading and top-notch personnel training project of Ningbo

Outstanding talent training program of Jiaxing

the K. C. Wong Magna Fund in Ningbo University

Publisher

IOP Publishing

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Mechanics of Materials,General Materials Science,General Chemistry,Bioengineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3