Perovskite-inspired materials for energy applications

Author:

Hoye Robert L ZORCID

Abstract

Abstract Lead-halide perovskites have come to dominate the emerging photovoltaics research scene over the past decade. But whilst perovskite photovoltaics exhibit exceptional efficiencies, their limited stability, as well as the toxicity of their lead component remain challenges. This focus collection captures a snapshot of the efforts in the community to address these challenges, from modifications to the synthesis and device structure of perovskite photovoltaics to improve their stability, through to efforts to understand, develop, and improve lead-free perovskite-inspired materials (PIMs). PIMs range from direct perovskite-derivatives (e.g. CsSnI3 or halide elpasolites) through to electronic analogs (e.g. BiOI). The collection discusses the application of these materials not only for solar cells, but also more broadly for photodetection, light emission, and anti-counterfeiting devices. This collection emphasizes the diversity of strategies and directions in this field, as well as its highly interdisciplinary nature.

Funder

Royal Academy of Engineering

Publisher

IOP Publishing

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Mechanics of Materials,General Materials Science,General Chemistry,Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3