Abstract
Abstract
Lead-halide perovskites have come to dominate the emerging photovoltaics research scene over the past decade. But whilst perovskite photovoltaics exhibit exceptional efficiencies, their limited stability, as well as the toxicity of their lead component remain challenges. This focus collection captures a snapshot of the efforts in the community to address these challenges, from modifications to the synthesis and device structure of perovskite photovoltaics to improve their stability, through to efforts to understand, develop, and improve lead-free perovskite-inspired materials (PIMs). PIMs range from direct perovskite-derivatives (e.g. CsSnI3 or halide elpasolites) through to electronic analogs (e.g. BiOI). The collection discusses the application of these materials not only for solar cells, but also more broadly for photodetection, light emission, and anti-counterfeiting devices. This collection emphasizes the diversity of strategies and directions in this field, as well as its highly interdisciplinary nature.
Funder
Royal Academy of Engineering
Subject
Electrical and Electronic Engineering,Mechanical Engineering,Mechanics of Materials,General Materials Science,General Chemistry,Bioengineering