Defect tolerance in halide perovskites: A first-principles perspective

Author:

Zhang Xie12ORCID,Turiansky Mark E.3ORCID,Shen Jimmy-Xuan3ORCID,Van de Walle Chris G.2ORCID

Affiliation:

1. Materials and Energy Division, Beijing Computational Science Research Center, Beijing 100193, China

2. Materials Department, University of California, Santa Barbara, California 93106-5050, USA

3. Department of Physics, University of California, Santa Barbara, California 93106-9530, USA

Abstract

In recent years, the impressive photovoltaic performance of halide perovskites has been commonly attributed to their defect tolerance. This attribution is seemingly intuitive and has been widely promoted in the field, though it has not been rigorously assessed. In this Perspective, we critically discuss the proposition of defect tolerance in halide perovskites based on first-principles calculations. We show that halide perovskites actually do suffer from defect-assisted nonradiative recombination, i.e., they are not defect tolerant. The nonradiative recombination rates in halide perovskites are comparable to or even greater than those in more conventional semiconductors. We note that to obtain accurate defect properties in halide perovskites, the level of theory and computational details are highly important, which was previously not sufficiently recognized. A distinctive feature of halide perovskites is that they can be grown with moderate defect densities using low-cost deposition techniques. But, similar to the case of conventional semiconductors, defect engineering is still key to improving the efficiency of perovskite solar cells.

Funder

U.S. Department of Energy

National Natural Science Foundation of China

Publisher

AIP Publishing

Subject

General Physics and Astronomy

Cited by 46 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3