The role of oxygen in a carbon source (castor oil versus paraffin oil) in the synthesis of carbon nano-onions

Author:

Makhongoana Annah,Matsoso Boitumelo JORCID,Mongwe Thomas H,Coville Neil JORCID,Wamwangi DanielORCID,Maubane-Nkadimeng Manoko SORCID

Abstract

Abstract The role of a carbon source containing oxygen groups on the physicochemical properties of carbon nano-onions (CNOs) was investigated. Two oils, castor oil (with O groups) and paraffin oil (without O groups) were converted to CNOs in gram-scale yields using an open flame pyrolysis procedure. The products were heated under argon at 900 °C for varying times (1 h, 2 h, 3 h), to investigate the temperature dependence on their structural properties. TGA studies indicated different decomposition behaviour for the different samples with the annealed paraffinic CNOs (CNOP) having a higher decomposition temperature (>600 °C) than the castor oil derived CNOs (CNOC) (<600 °C). TEM images revealed formation of typical chain-like quasi-spherical nanostructures with particles size distributions for the CNOP (22–32 ± 7.8 nm) and the CNOC (44–51 ± 9.9 nm) materials. A detailed Raman analysis of the CNOs revealed that the graphicity of the CNOs varied with both the carbon oil source and the annealing time. Deconvolution of the first order Raman spectra revealed changes in the parameters of the major Raman bands that were then correlated with defect density ratios. Finally, bandwidth analysis depicted the dependence of the graphicity of the CNOs with heat treatment. The data thus indicate that the presence of oxygen in the carbon source provides a method for producing different CNOs and that simple procedures can be used to produce these different CNOs.

Funder

National Research Foundation South Africa

Publisher

IOP Publishing

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Mechanics of Materials,General Materials Science,General Chemistry,Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3