An atomic-layer NiO-BaTiO3 nanocomposite for use in electrochemical sensing of serotonin

Author:

Ran GuORCID,Xia Ying,Zhang Hengchang,Kuang Wei,Fu Chuan

Abstract

Abstract The NiO films were deposited on the surface of BaTiO3 (BTO) by atomic layer deposition (ALD). The thickness of NiO film was controlled by the number of ALD cycles, which the optimum number of ALD cycles were 400 cycles. The morphology of NiO-BTO nanocomposite was observed by x-ray diffraction, scanning electron microscope, and transmission electron microscopy. The sensor based on NiO-BTO nanocomposite displays good electrocatalytic activity and high sensitivity for serotonin (at 0.36 V vs. Ag/AgCl). In the range of 0.05–5 μM, the concentrations of serotonin are linearly related to current intensity and the detection limit is 0.03 μM (S/N = 3). The NiO-BTO/GCE was successfully applied in serum samples. It shows that the NiO-BTO nanocomposite prepared by ALD can serve as electrochemical sensor devices and applications in the fields of biosensors.

Funder

Chongqing Research Program of Basic Research and Frontier Technology

National Nature Science Foundation of China

Scientific and Technological Research Program of Chongqing Municipal Education Commission

Publisher

IOP Publishing

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Mechanics of Materials,General Materials Science,General Chemistry,Bioengineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3