Abstract
Serotonin is a very important monoamine neurotransmitter, which takes part in biological and psychological processes. In the present scenario, design and fabrication of a serotonin electrochemical sensor is of great significance. In this study, we have synthesized α-MnO2 via a hydrothermal synthesis method using potassium permanganate as a precursor. The physiochemical properties, such as structural and phase-purity of the prepared α-MnO2, were investigated by various characterization techniques and methods (powder X-ray diffraction, scanning electron microscopy, and energy-dispersive X-ray spectroscopy). Furthermore, the serotonin sensor was fabricated using α-MnO2 as an electrode modifier or electro-catalyst. The bare glassy carbon electrode (GCE) was adopted as a working substrate, and its active carbon surface was modified with the synthesized α-MnO2. This modified GCE (α-MnO2/GCE = MGCE) was explored as a serotonin sensor. The electrochemical investigations showed that the MGCE has excellent electro-catalytic properties towards determination of serotonin. The MGCE exhibits an excellent detection limit (DL) of 0.14 µM, along with good sensitivity of 2.41 µAµM−1 cm−2. The MGCE also demonstrated excellent selectivity for determination of serotonin in the presence of various electro-active/interfering molecules. The MGCE also exhibits good cyclic repeatability, stability, and storage stability.
Funder
Korea Innovation Foundation (INNOPOLIS) grant funded by the Korea government
National Research Foundation of Korea (NRF) grant funded by the Korea government
Subject
Clinical Biochemistry,General Medicine,Analytical Chemistry,Biotechnology,Instrumentation,Biomedical Engineering,Engineering (miscellaneous)
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献