Controllable resistive switching behaviors in heteroepitaxial LaNiO3/Nb:SrTiO3 Schottky junctions through oxygen vacancies engineering

Author:

Zhang YongORCID,Gao Shunhua,Cao GuimingORCID,Ma Chunrui,Nan Hu,Liu Ming

Abstract

Abstract Perovskite oxide-based memristors have been extensively investigated for the application of non-volatile memories, and the oxygen vacancies associated with Schottky barrier changing are considered as the origin of the memristive behaviors. However, due to the difference of device fabrication progress, various resistive switching (RS) behaviors have been observed even in one device, deteriorating the stability and reproducibility of devices. Precisely controlling the oxygen vacancies distribution and shedding light on the behind physic mechanism of these RS behaviors, are highly desired to help improve the performance and stability of such Schottky junction-based memristors. In this work, the epitaxial LaNiO3 (LNO)/Nb:SrTiO3 (NSTO) is adopted to explore the influence of oxygen vacancy profiles on these abundant RS phenomena. It demonstrates that the migration of oxygen vacancy in LNO films plays a key role in memristive behaviors. When the effect of oxygen vacancies at the LNO/NSTO interface is negligible, improving the oxygen vacancies concentration in LNO film could facilitate resistance on/off ratio of HRS and LRS, and the corresponding conducting mechanisms attributes to the thermionic emission and tunneling-assisted thermionic emission, respectively. Moreover, it is found that reasonably increasing the oxygen vacancies at LNO/NSTO interface makes trap-assisted tunneling possible, also providing an effective way to improve the performance of the device. The results in this work have clearly elucidated the relationship between oxygen vacancy profile and RS behaviors, and give physical insights into the strategies for improving the device performance of Schottky junction-based memristors.

Funder

Startup Fund of Xichang University

China Postdoctoral Science Foundation

Fundamental Research Funds for the Central Universities

Publisher

IOP Publishing

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Mechanics of Materials,General Materials Science,General Chemistry,Bioengineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3