Effect of sodium thiazolinyl dithiopropane sulphonate (SH110) addition on electroplating nanotwinned copper films and their filling performance of fine-pitch redistributed layer (RDL)

Author:

Huang Jing,Gao Li-YinORCID,Peng Zhen-Jia,Li Zhe,Liu Zhi-Quan,Sun Rong

Abstract

Abstract Nanotwinned copper is a potential microelectronic interconnection material due to its superior strength and conductivity, however, its filling ability is urgently needed to improve before its application in the field of advanced packaging. The effect of additive (sodium thiazolinyl dithiopropane sulphonate, SH110) addition on the surface roughness, microstructure, mechanical properties and filling capacity of nanotwinned copper films was investigated. The surface roughness and grain size were firstly reduced then increased with the increasing concentrations of SH110, reaching the minimum value at 10 ppm. It was noticed that copper films with 10 ppm SH110 also possessed superior tensile strength and elongation, which were measured as 481 MPa and 3.68% on average of 12 μm thick samples by dynamic thermo-mechanical analyzer. Further, their uniformity and flatness of redistributed layers (RDLs) were controlled as 2% and 1.9%, which were significantly improved compared to the samples without SH110 (7.6% and 4.7%). As demonstrated by linear sweep voltammetry analysis and galvanostatic measurement, the SH110 could cooperate well with gelatin and serve as a combination of accelerator and leveler, resulting in the improvement of filling capacity for nanotwinned copper RDLs.

Funder

National Natural Science Foundation of China

Guangdong Basic and Applied Basic Research Foundation

SIAT Innovation Program for Excellent Young Researchers

Publisher

IOP Publishing

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Mechanics of Materials,General Materials Science,General Chemistry,Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3