α-graphyne as a promising anode material for Na-ion batteries: a first-principles study

Author:

Singh Tavinder,Choudhuri Jyoti Roy,Rana Malay KumarORCID

Abstract

Abstract Lithium-ion batteries (LIBs) have emerged as a technological game-changer. Due to the rising price of lithium and the environmental concerns LIBs pose, their use is no longer viable. Sodium (Na) may be the best contender among the alternatives for replacing lithium. Conventional graphite has a limited capacity for Na storage. Hence, α-graphyne, an allotrope of carbon, was studied here as a potential anode material for Na-ion batteries (NIBs), employing density functional theory. In-plane Na atom adsorption results in a semi-metallic to metallic transition of α-graphyne. Electronic transport calculations show an increase in current after Na adsorption in graphyne. The successive adsorption of Na atoms on the surface of graphyne leads to a theoretical capacity of 1395.89 mA h g−1, which is much greater than graphite. The average open circuit voltage is 0.81 V, which is an ideal operating voltage for NIBs. Intra- and inter-hexagon Na diffusions have very low energy barriers of 0.18 eV and 0.96 eV, respectively, which ensure smooth operation during charge/discharge cycles. According to this study, the α-graphyne monolayer thus has the potential to be employed as an anode in NIBs.

Funder

Science and Engineering Research Board

Publisher

IOP Publishing

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Mechanics of Materials,General Materials Science,General Chemistry,Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3