Theoretical Investigation of a Novel Two-Dimensional Non-MXene Mo3C2 as a Prospective Anode Material for Li- and Na-Ion Batteries

Author:

Xue Bo1,Zeng Qingfeng234,Yu Shuyin23,Su Kehe5

Affiliation:

1. School of Physical Science and Technology, Northwestern Polytechnical University, Xi’an 710129, China

2. MSEA International Institute for Materials Genome, Langfang 065500, China

3. Particle Cloud Biotechnology (Hangzhou) Co., Ltd., Hangzhou 310018, China

4. Science and Technology on Thermostructural Composite Materials Laboratory, Northwestern Polytechnical University, Xi’an 710072, China

5. School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi’an 710129, China

Abstract

A new two-dimensional (2D) non-MXene transition metal carbide, Mo3C2, was found using the USPEX code. Comprehensive first-principles calculations show that the Mo3C2 monolayer exhibits thermal, dynamic, and mechanical stability, which can ensure excellent durability in practical applications. The optimized structures of Lix@(3×3)-Mo3C2 (x = 1–36) and Nax@(3×3)-Mo3C2 (x = 1–32) were identified as prospective anode materials. The metallic Mo3C2 sheet exhibits low diffusion barriers of 0.190 eV for Li and 0.118 eV for Na and low average open circuit voltages of 0.31–0.55 V for Li and 0.18–0.48 V for Na. When adsorbing two layers of adatoms, the theoretical energy capacities are 344 and 306 mA h g−1 for Li and Na, respectively, which are comparable to that of commercial graphite. Moreover, the Mo3C2 substrate can maintain structural integrity during the lithiation or sodiation process at high temperature. Considering these features, our proposed Mo3C2 slab is a potential candidate as an anode material for future Li- and Na-ion batteries.

Funder

National Natural Science Foundation of China

MSEA International Institute for Materials Genome

high-performance computing center of Northwestern Polytechnical University

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3