Preparation of multifunctional mesoporous SiO2 nanoparticles and anti-tumor action

Author:

Wu YijunORCID,Sun Zhiqiang,Song Jinfeng,Mo Liufang,Wang Xiaochen,Liu Hanhan,Ma Yunfeng

Abstract

Abstract A targeted drug delivery system was developed to accumulate specific drugs around tumor cells based on the redox, temperature, and enzyme synergistic responses of mesoporous silica nanoparticles. Mesoporous silica nanoparticles (MSN-NH2) and Doxorubicin (DOX) for tumor therapy were prepared and loaded into the pores of MSN- NH2 to obtain DOX@MSN(DM NPs). Hyaluronic acid (HA) was used as the backbone and disulfide bond was used as the linker arm to graft carboxylated poly (N-isopropylacrylamide)(PNIPAAm-COOH) to synthesize the macromolecular copolymer (HA-SS-PNIPAAm), which was modified to DM NPs with capped ends to obtain the nano-delivery system DOX@MSN@HA-SS-PNIPAAm(DMHSP NPs), and a control formulation was prepared in a similar way. DMHSP NPs specifically entered tumor cells via CD44 receptor-mediated endocytosis; the high GSH concentration (10 mM) of cells severed the disulfide bonds, the hyaluronidase sheared the capped HA to open the pores, and increased tumor microenvironment temperature due to immune response can trigger the release of encapsulated drugs in thermosensitive materials. In vitro and in vivo antitumor and hemolysis assays showed that DMHSP NPs can accurately target hepatocellular carcinoma cells with a good safety profile and have synergistic effects, which meant DMHSP NPs had great potential for tumor therapy.

Publisher

IOP Publishing

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Mechanics of Materials,General Materials Science,General Chemistry,Bioengineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Molecular Modeling in Drug Delivery;Exploring Computational Pharmaceutics ‐ AI and Modeling in Pharma 4.0;2024-06-21

2. Environmental stimulus-responsive mesoporous silica nanoparticles as anticancer drug delivery platforms;Colloids and Surfaces B: Biointerfaces;2024-02

3. Nanomaterials for Targeting Liver Disease: Research Progress and Future Perspectives;Nano Biomedicine and Engineering;2023-06

4. Preparation and anti-tumor effects of mesoporous silica nanoparticles loaded with trifluoperazine;Journal of Materials Chemistry B;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3