Abstract
Abstract
Recent advances in nanotechnology and optics have paved the way for new plasmonic devices. One of them are nanopatch antennas that are simple and, at the same time, effective devices for localizing the electromagnetic field on a scale of less than 10 nm and can be used in photonic integrated circuits as effective sources of photons, including single-photon sources. In the present study, we investigate the radiative characteristics of a submonolayer of colloidal CdSe/CdS quantum dots that form island structures in a resonator: a cubic silver nanoparticle on an aluminum mirror. For detecting plasmonic nanoparticles on glass or metal surfaces, we propose a new technique involving a tunable laser and a confocal microscope. We provide a comparative study of the luminescence enhancement factors for QDs in the NPAs upon off-resonance excitation and at a wavelength close to the resonance; a significant difference in the luminescence enhancement factors (by order of magnitude) is demonstrated. A 60-fold reduction in the spontaneous emission time, as well as an increase in the radiation intensity by a factor of 330, has been obtained in the experiments. The increase in the spontaneous emission rate demonstrated for the quantum dots is explained by the Purcell effect. Full-wave simulations of electromagnetic fields were carried out for the model of the developed nanopatch antenna; luminescence enhancement factors and radiative efficiencies were calculated as well.
Funder
Российский Фонд Фундаментальных Исследований
Subject
Electrical and Electronic Engineering,Mechanical Engineering,Mechanics of Materials,General Materials Science,General Chemistry,Bioengineering
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献