Silver nanoparticle on aluminum mirror: active spectroscopy and decay rate enhancement

Author:

Kurochkin N SORCID,Eliseev S P,Gritsienko A V,Sychev V V,Vutukhnovsky A G

Abstract

Abstract Recent advances in nanotechnology and optics have paved the way for new plasmonic devices. One of them are nanopatch antennas that are simple and, at the same time, effective devices for localizing the electromagnetic field on a scale of less than 10 nm and can be used in photonic integrated circuits as effective sources of photons, including single-photon sources. In the present study, we investigate the radiative characteristics of a submonolayer of colloidal CdSe/CdS quantum dots that form island structures in a resonator: a cubic silver nanoparticle on an aluminum mirror. For detecting plasmonic nanoparticles on glass or metal surfaces, we propose a new technique involving a tunable laser and a confocal microscope. We provide a comparative study of the luminescence enhancement factors for QDs in the NPAs upon off-resonance excitation and at a wavelength close to the resonance; a significant difference in the luminescence enhancement factors (by order of magnitude) is demonstrated. A 60-fold reduction in the spontaneous emission time, as well as an increase in the radiation intensity by a factor of 330, has been obtained in the experiments. The increase in the spontaneous emission rate demonstrated for the quantum dots is explained by the Purcell effect. Full-wave simulations of electromagnetic fields were carried out for the model of the developed nanopatch antenna; luminescence enhancement factors and radiative efficiencies were calculated as well.

Funder

Российский Фонд Фундаментальных Исследований

Publisher

IOP Publishing

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Mechanics of Materials,General Materials Science,General Chemistry,Bioengineering

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3