IR luminescence of plexcitonic structures based on Ag2S/L-Cys quantum dots and Au nanorods

Author:

Grevtseva Irina1,Ovchinnikov Oleg1,Smirnov Mikhail12,Perepelitsa Alexey1ORCID,Chevychelova Tamara1,Derepko Violetta1,Osadchenko Anna34,Selyukov Alexandr345

Affiliation:

1. Voronezh State University

2. Federal State Budget Educational Institution of Higher Education "Voronezh State University of Engineering Technologies"

3. Bauman Moscow State Technical University

4. P.N. Lebedev Physical Institute of the Russian Academy of Sciences

5. Moscow Institute of Physics and Technology

Abstract

The luminescence properties of Ag2S quantum dots passivated with L-Cysteine (Ag2S/L-Cys QDs) are studied in the presence of Au nanorods passivated with cetyltrimethylammonium bromide molecules (Au/CTAB NRs). The effect of plasmonic Au/CTAB NRs on IR trap state luminescence (750 nm) is considered. It has been found that the direct interaction between the components of the plexcitonic nanostructure leads to a significant luminescence quenching of Ag2S/L-Cys QDs, with the luminescence lifetime being constant. This is the evidence for photoinduced charge transfer. The spatial separation of the components of plexcitonic nanostructures due to the introduction of a polymer – Poly(diallyldimethylammonium chloride) (PolyDADMAC) provides a means to change their mutual arrangement and achieve an increase in the IR trap state luminescence intensity and a decrease in the luminescence lifetime from 7.4 ns to 4.5 ns. With weak plexcitonic coupling in the nanostructures [Ag2S QD/L-Cys]/[PolyDADMAC]/[Au/CTAB NRs], the possibility of increasing the quantum yield of trap state luminescence for Ag2S QDs due to the Purcell effect has been demonstrated.

Funder

Russian Science Foundation

Ministry of Science and Higher Education of the Russian Federation

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3