Correlation between charge density wave phase transition and hydrogen adsorption in 1T-TaS2 thin film devices

Author:

Ishiguro YasushiORCID,Suzuki Rintaro,Yangzhou Zhao,Kodama Naoko,Takai KazuyukiORCID

Abstract

Abstract Thin films of tantalum disulfide in the 1T-polytype structural phase (1T-TaS2), a type of metallic two-dimensional (2D) transition metal dichalcogenides (TMDs), are reactive to H2. Interestingly, in the incommensurate charge-density wave (ICCDW) phase with a metallic state, the electrical resistance of the 1T-TaS2 thin film decreases when H2 is adsorbed on it and returns to its initial value upon desorption. In contrast, the electrical resistance of the film in the nearly commensurate CDW (NCCDW) phase, which has a subtle band overlap or a small bandgap, does not change upon H2 adsorption/desorption. This difference in H2 reactivity is a result of differences in the electronic structure of the two 1T-TaS2 phases, namely, the ICCDW and NCCDW phases. Compared to other semiconductor 2D-TMDs such as MoS2 and WS2, the metallic TaS2 has been theoretically proven to capture gas molecules more easily because Ta has a stronger positive charge than Mo or W. Our experimental results provide evidence of this. Notably, this study is the first example of H2 sensing using 1T-TaS2 thin films and demonstrates the possibility of controlling the reactivity of the sensors to the gas by changing the electronic structure via CDW phase transitions.

Funder

Japan Society for the Promotion of Science

Publisher

IOP Publishing

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Mechanics of Materials,General Materials Science,General Chemistry,Bioengineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3