Evaluating humidity sensing response of graphene quantum dots synthesized by hydrothermal treatment of glucose

Author:

Khan NoumanORCID,Nawaz AhmadORCID,Islam BilalORCID,Sayyad M Hassan,Joya Yasir Faheem,Islam Sara,Bibi Saira

Abstract

Abstract Graphene quantum dots (GQDs) were prepared using a single-step hydrothermal treatment of glucose (C6H12O6) powder. X-ray diffraction patterns confirmed the random stacking or amorphous character of GQDs. Additionally, the UV-vis spectra confirmed the formation of GQDs with evident absorption peaks at 237 and 305 nm, which is attributed to π- π* and n- π* transitions correspondingly. The average size and surface roughness of graphene quantum dots were estimated by atomic force microscopy images and found to be 27.0 ± 1.0 and 2.3 nm, respectively. Afterwards, the effect of increasing relative humidity (RH) from 0%–95%, and frequency, was analyzed using the capacitive and resistive responses of synthesized GQDs. The capacitive output at 0.1 kHz revealed that initially capacitance remains constant (15.0 ± 1.0 pF) up to a humidity level ranging between 0%–50%. Likewise, capacitance also displayed stabilized behavior after frequency levels were increased i.e., 1.0 and 10 kHz, at a humidity ranging from 0%–55%. Moreover, capacitance showed a 115,455, 22,480 and 3,620% improvement from their stable values at each respective frequency level i.e., 0.1, 1.0 and 10 kHz. The capacitive sensitivity decreased to 84.20 and 96.83% at greater frequencies (1.0 and 10 kHz) in comparison to the sensitivity at 0.1 kHz facing similar variations in a humid environment. In contrast, resistance displayed an exponential decline by 99.9900, 99.9796 and 99.9925%, accordingly, when RH increases from 0 to 95% at 0.1, 1.0 and 10 kHz, respectively. However, with the rise in frequency level from 0.1 to 1.0 kHz, resistive sensitivity increased considerably to 69 and 158.5%, respectively, in two prominent humidity ranges i.e., 0 ≤ RH ≤ 25% and 25% ≤ RH ≤ 50%. A further increase in testing frequency to 10 kHz enhances the resistive sensitivity by 598.5 and 178.5% when compared with the lowest sensitivity values at two noticeable humidity levels, 0%–25% and 25%–50%. The response and recovery times of our specimen were better than most of previously fabricated GQDs and other carbon-derived nanomaterials, which makes the nano-GQDs of our study more suitable for RH sensor application.

Publisher

IOP Publishing

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Mechanics of Materials,General Materials Science,General Chemistry,Bioengineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3