Alkaline N-GQDs fluorescent probe for the ultrasensitive detection of creatinine

Author:

Ravi Pavithra VerthikereORCID,Subramaniyam VinodhiniORCID,Saravanakumar Neha,Pichumani MoorthiORCID

Abstract

Abstract Creatinine (Crn) is an important excretory product of the human body. Medical laboratory technology has improved over years and brought many advancements in clinical diagnostics equipment, and testing techniques and made the tests more efficient. Yet, the quantitative analysis of Crn is still carried out by the classical Jaffe’s reaction (using Picric acid (PA) with NaOH) method. Since PA is hazardous to human health, alternative solutions such as; nanoparticles and surface-modified nanoparticles can be used. Exploring the optoelectronic properties of carbon-based quantum dots for biomolecule sensing is of current interest among researchers. Nitrogen functionalized graphene quantum dots (Alk-NGQDs) measured featured Crn easier and reduced the time taken for the test carried out in laboratories. The synthesized Alk-NGQDs optical, structural, morphological properties, surface and compositions are studied through XPS, HRTEM, XRD, FTIR, and spectroscopic techniques. Alk-NGQDs at alkaline conditions (pH 9.5) form a stable complex with Crn through intermolecular charge transfer (ICT). The fluorescence titration method is used to sense Crn in commercial Crn samples and human blood serum. To understand the efficacy of sensing creatinine using Alk-NGQDs, working concentration, fluorescence quantum yield, the limit of detection, and quenching constant are calculated using the Stern-Volmer plot. The emission property of Alk-NGQDs is aimed to bring an alternative to the traditional colorimetric Jaffe’s reaction.

Funder

the Council of Scientific & Industrial Research, India for the Senior Research Fellowship

Publisher

IOP Publishing

Subject

Spectroscopy,General Materials Science,Instrumentation,Atomic and Molecular Physics, and Optics

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3