Abstract
Abstract
The adhesive contact problem between a rigid cylindrical punch and a gradient nanostructured (GNS) coating is investigated by considering the size effect. The laminated plate model is applied to characterize the material properties of a GNS coating in plane strain couple stress elasticity. By using the Fourier integral transform and transfer matrix method, the governing integral equation(s) for the two-dimensional adhesive contact problem are obtained. Numerically calculated results are presented to analyse the effect of characteristic material length, the adhesion parameter and nonhomogeneous parameters on the mechanical response of the GNS coating for the adhesive contact problem. We explore the nanoscale contact of a GNS coating with shear modulus varying as a function of depth according to an exponential function or the power-law function. The present results provide a way to improve the contact deformation and damage to nanoelectromechanical systems by adjusting the gradient index of the GNS coating.
Funder
National Natural Science Foundation of China
the Natural Science Foundation of Inner Mongolia
Subject
Electrical and Electronic Engineering,Mechanical Engineering,Mechanics of Materials,General Materials Science,General Chemistry,Bioengineering
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献