Rapid laser nanomanufacturing and direct patterning of 2D materials on flexible substrates—2DFlex

Author:

Ahmadi Zabihollah,Fathi-Hafshejani Parvin,Kayali Emre,Beidaghi Majid,Mahjouri-Samani MasoudORCID

Abstract

Abstract Direct synthesis, large-scale integration, and patterning of two-dimensional (2D) quantum materials (e.g. MoS2, WSe2) on flexible and transparent substrates are of high interest for flexible and conformal device applications. However, the growth temperatures (e.g. 850 °C) of the emerging 2D materials in the common gas-phase synthesis methods are well beyond the tolerances limit of flexible substrates, such as polydimethylsiloxane (PDMS). In addition, random nucleation and growth process in most growth systems limits the predicted integration and patterning freedoms. Here, we report a rapid direct laser crystallization and mask-free large-scale patterning of MoS2 and WSe2 crystals on PDMS substrates. A thin layer of stoichiometric amorphous 2D film is first laser-deposited via pulsed laser deposition (PLD) system onto the flexible substrates followed by a controlled crystallization and direct writing process using a tunable nanosecond laser (1064 nm). The influences of pulse duration, number of pulses, and the thickness of the deposited amorphous 2D layer on the crystallization of 2D materials are discussed. Optical spectroscopy and electrical characterizations are performed to confirm the quality of crystallized 2D materials on flexible substrates. This novel method opens up a new opportunity for the crystallization of complex patterns directly from computer-aided design models for the future 2D materials-based wearable, transparent, and flexible devices.

Funder

Auburn University

NSF

Publisher

IOP Publishing

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Mechanics of Materials,General Materials Science,General Chemistry,Bioengineering

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3