Abstract
Abstract
Direct synthesis, large-scale integration, and patterning of two-dimensional (2D) quantum materials (e.g. MoS2, WSe2) on flexible and transparent substrates are of high interest for flexible and conformal device applications. However, the growth temperatures (e.g. 850 °C) of the emerging 2D materials in the common gas-phase synthesis methods are well beyond the tolerances limit of flexible substrates, such as polydimethylsiloxane (PDMS). In addition, random nucleation and growth process in most growth systems limits the predicted integration and patterning freedoms. Here, we report a rapid direct laser crystallization and mask-free large-scale patterning of MoS2 and WSe2 crystals on PDMS substrates. A thin layer of stoichiometric amorphous 2D film is first laser-deposited via pulsed laser deposition (PLD) system onto the flexible substrates followed by a controlled crystallization and direct writing process using a tunable nanosecond laser (1064 nm). The influences of pulse duration, number of pulses, and the thickness of the deposited amorphous 2D layer on the crystallization of 2D materials are discussed. Optical spectroscopy and electrical characterizations are performed to confirm the quality of crystallized 2D materials on flexible substrates. This novel method opens up a new opportunity for the crystallization of complex patterns directly from computer-aided design models for the future 2D materials-based wearable, transparent, and flexible devices.
Subject
Electrical and Electronic Engineering,Mechanical Engineering,Mechanics of Materials,General Materials Science,General Chemistry,Bioengineering
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献