CrackWeb : A modified U-Net based segmentation architecture for crack detection

Author:

Ghosh Sandeep,Singh Subham,Maity Amit,Maity Hirak Kumar

Abstract

Abstract Classical image processing methods demands heavy feature engineering, as well as they are not that precise, when it comes to manual extraction of relevant features in real life scenarios amid to various lighting conditions and other factors.Thus, detection of cracks using methods based on classical image processing techniques fails to provide satisfactory results always. Hence, we have proposed a deep convolutional neural network, that is not based on manual extraction of features as mentioned above. We proposed a modified U-Net architecture, and replaced all of its convolutional layers with residual blocks, inspired from the ResNet architecture. For evaluation of our model Dice Loss is used as our objective function and F1 score as a metric. Other than that, for better convergence and optimization, a learning rate scheduler and AMSGRAD optimizer was utilized.

Publisher

IOP Publishing

Subject

General Medicine

Reference21 articles.

1. Automatic road crack segmentation using entropy and image dynamic thresholding;Oliveira,2009

2. Automatic pixel level pavement crack detection using information of multiscale neighborhoods;Ai;IEEE Access,2018

3. Automatic road crack detection using random structured forests IEEE;Shi;Trans. Intell. Transp. Syst.,2016

4. Automatic pavement crack detection by multi scale image fusion;Li;IEEE Trans. Intell. Transp. Syst.,2019

5. A deep residual network with transfer learning for pixel-level road crack detection;Bang;ISARC,2018

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3