Towards simulation of disassembly of bonded composite parts using the laser shock technique

Author:

Kormpos P,Tserpes K,Floros G

Abstract

Abstract In this work, a model for simulating the laser shock-based disassembly of composite components is developed using the LS-DYNA explicit code. The laser shock technique has been used in the past for the non-destructive testing of adhesive bonds, but with appropriate adjustments it is possible to create a localized tensile stress that is high enough for adhesive failure to occur, making it suitable for use in the disassembly of bonded parts. In this first attempt, we focus on the development of a multiple loading instances simulation process, aiming to completely debond two carbon fiber reinforced plastic (CFRP) plates. The process of laser shock for disassembly requires an increased number of loading instances in order to cover the full bonded area. That, in addition to the short time duration in which the phenomena are evolved, poses a serious challenge for the numerical simulations, and thus a reliable procedure must be defined in terms of functionality and computational cost. Indeed, an iterative method, where the deformed model is used as input in subsequent simulations is evaluated, optimized and compared with a more traditional single model simulation.

Publisher

IOP Publishing

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3