A Laser Shock-Based Disassembly Process for Adhesively Bonded Ti/CFRP Parts

Author:

Kormpos Panagiotis1ORCID,Unaldi Selen2,Berthe Laurent2,Tserpes Konstantinos1ORCID

Affiliation:

1. Laboratory of Technology & Strength of Materials (LTSM), Department of Mechanical Engineering & Aeronautics, University of Patras, 26504 Patras, Greece

2. PIMM, UMR8006 ENSAM, CNRS, CNAM, 151 bd de l’Hôpital, 75013 Paris, France

Abstract

The application of adhesively bonded joints in aerospace structural parts has increased significantly in recent years and the general advantages of their use are well-documented. One of the disadvantages of adhesive bonding is the relevant permanence, when compared to traditional mechanical fastening. End-of-life processes generally require the separation of the adherents for repair or recycling, and usually to achieve this, they combine large mechanical forces with a high temperature, thus damaging the adherents, while consuming large amounts of energy. In this work, a novel disassembly technique based on laser-induced shock waves is proposed for the disassembly of multi-material adhesively bonded structures. The laser shock technique can generate high tensile stresses that are able to break a joint, while being localized enough to avoid damaging the involved adherents. The process is applied to specimens made from a 3D-woven CFRP core bonded to a thin Ti layer, which is a common assembly used in state-of-the-art aircraft fan blades. The experimental process has been progressively developed. First, a single-sided shot is applied, while the particle velocity is measured at the back face of the material. This method proves ineffective for damage creation and led to a symmetric laser configuration, so that the tensile stress can be controlled and focused on the bond line. The symmetric approach is proved capable of generating a debonding between the Ti and the CFRP and propagating it by moving the laser spot. Qualitative assessment of the damage that is created during the symmetric experimental process indicates that the laser shock technique can be used as a material separation method.

Funder

European Commission

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3