Investigation on the limp properties of formed foils for hydrogen applications

Author:

Wituschek S,Römisch D,Lechner M,Merklein M

Abstract

Abstract The mass production of bipolar plates for electrolyzers and fuel cells is a central step towards the realization of efficient and cost-effective energy systems of the future. However, current production processes are reaching their limits and can hardly realize the quantities that will soon be demanded, nor can they scale up to the required volumes. Particularly for the handling of half-plates and bipolar plates, major challenges are to be expected, especially with regard to production rates. Existing handling systems have restricted scalability and precision. Therefore, new stacking technologies are necessary, which have to be adaptable to the mechanical properties of the components and maintain tight tolerances during stacking to ensure hydrogen sealing for safety and efficiency. An important property in the handling of the plates is their limpness, which is distinguished by instability of the components as well as plastic deformation at low forces and moments. Therefore, the limp behavior of the components must be analyzed. To investigate the limpness of foil components, a flowfield is first formed using a 1.4404 stainless steel foil with a sheet thickness of 0.075 mm. Subsequently, the workpieces are analyzed in terms of their limp properties by means of a 3-point bending test.

Publisher

IOP Publishing

Reference13 articles.

1. Fuel Cells - Fundamentals and Applications;Carrette;Fuel Cells,2001

2. EU hydrogen policy;European Parliament,2021

3. Toyota plans mass production of fuel cell stacks and hydrogen tanks, 10-fold increase from 2020;Fuel Cells Bulletin,2018

4. Review of bipolar plates in PEM fuel cells: Flow-field designs;Li;International Journal of Hydrogen Energy,2005

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3