Abstract
AbstractNowadays, the requirements to reduce greenhouse gas emissions and to provide a healthy and more habitable environment, has led to the development of several sustainable alternative for eco-mobility. Since the improvement of internal combustion engine has reached a steady state point in terms of overall efficiency, the increasingly stringent requirements imposed by international normative standards are leading automotive companies to find other alternatives to reduce pollution. Thanks to the exponentially growth of power electronics, the huge interest on research of high energy and power density batteries and the more integration of the embedded systems, the central role of the electric drive has taken over on most of vehicles applications. The wide use of permanent magnets synchronous motors for electric vehicles application has rapidly spread out, thanks to their capability to provide high torque and efficiency with low weight and size. Since the natural behaviour of permanent magnets to demagnetize under severe conditions, both coupled thermal and magnetics, the necessity to understand and predict the phenomena is mandatory. This paper carries out a performance analysis in duty cycle, given by real CAN and GPS readings in a studied pathway, with discussion of numerical and graphic technical evaluations. Finite element software has also been used for coupled electromagnetic and thermal calculation to set the magnets working point and establish the temperature distribution within the motor itself during the whole thermal transient. A particular overview is done on the dependence of material used and different cooling solutions adopted.
Reference17 articles.
1. A Review of Hybrid Electric Architectures in Construction, Handling and Agriculture Machines;Mocera,2022
2. Analysis of a Parallel Hybrid Electric Tractor for Agricultural Applications;Mocera;Energies,2020
3. Power Electronics and Motor Drives Recent Progress and Perspective;Bose;IEEE Transactions on Industrial Electronics,2009
4. Design of high-speed permanent magnet synchronous machines considering thermal demagnetization and mechanical characteristic of permanent magnet;Tae-Kyoung;AIP Advances,2022
5. A Battery Performance Analysis for Working Vehicle Applications in;Mocera;IEEE Transactions on Industry Applications,2020