Image Enhancement Sputum Containing Mycobacterium Tuberculosis Using A Spatial Domain Filter

Author:

Rachmad Aeri,Chamidah Nur,Rulaningtyas Riries

Abstract

Abstract Image enhancement sputum is needed to identify bacteria mycobacterium tuberculosis (TB). The number of TB bacteria in sputum images determines the severity of tuberculosis sufferers. In this paper, we study image enhancement sputum techniques by using spatial domain filter-based methods such as median filtering, Gaussian filtering, adaptive noise-removal filtering and bilateral filtering. These filtering techniques are used to overcome the problems when taking sputum images such as adjusting the focus of the lens, lighting and dirt that stick to the lens and on the slide glass. The obtained results for 100 data sputum images from this study are average means square error (MSE) of median filtering, Gaussian filtering, adaptive noise-removal filtering and bilateral filtering, i.e., 30.68, 17.10, 18.92 and 26.28, respectively. Also, average peak signal-to-noise ratio (PSNR) of them are 33.70 dB, 35.91 dB, 35.59 dB and 34.01 dB, respectively. The avarage computational time are 0.09 sec, 0.18 sec, 0.38 sec and 134 sec respectively.

Publisher

IOP Publishing

Subject

General Medicine

Reference20 articles.

1. Tuberculosis (TB) identification in the Ziehl-Neelsen sputum sample in Ntsc channel and support vector machine (SVM) classification;Adi;International Journal of Innovative Research in Science, Engineering and Technology,2013

2. Automated object and image level classification of TB images using support vector neural network classifier;Priya;Biocybernetics and Biomedical Engineering,2016

3. Color thresholding method for image segmentation algorithm of Ziehl-Neelsen sputum slide images;Raof,2008

4. RGB histogram based color image segmentation using firefly algorithm;Rajinikanth;Procedia Computer Science,2015

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3