Crack Segmentation Extraction and Parameter Calculation of Asphalt Pavement Based on Image Processing

Author:

Li Zhongbo1,Yin Chao1,Zhang Xixuan1

Affiliation:

1. School of Civil Engineering and Geomatics, Shandong University of Technology, Zibo 255049, China

Abstract

Crack disease is one of the most serious and common diseases in road detection. Traditional manual methods for measuring crack detection can no longer meet the needs of road crack detection. In previous work, the authors proposed a crack detection method for asphalt pavements based on an improved YOLOv5s model, which is a better model for detecting various types of cracks in asphalt pavements. However, most of the current research on automatic pavement crack detection is still focused on crack identification and location stages, which contributes little to practical engineering applications. Based on the shortcomings of the above work, and in order to improve its contribution to practical engineering applications, this paper proposes a method for segmenting and analyzing asphalt pavement cracks and identifying parameters based on image processing. The first step is to extract the crack profile through image grayscale, histogram equalization, segmented linear transformation, median filtering, Sauvola binarization, and the connected domain threshold method. Then, the magnification between the pixel area and the actual area of the calibration object is calculated. The second step is to extract the skeleton from the crack profile images of asphalt pavement using the Zhang–Suen thinning algorithm, followed by removing the burrs of the crack skeleton image using the connected domain threshold method. The final step is to calculate physical parameters, such as the actual area, width, segments, and length of the crack with images obtained from the crack profile and skeleton. The results show that (1) the method of local thresholding and connected domain thresholding can completely filter noise regions under the premise of retaining detailed crack region information. (2) The Zhang–Suen iterative refinement algorithm is faster in extracting the crack skeleton of asphalt pavement, retaining the foreground features of the image better, while the connected-domain thresholding method is able to eliminate the missed isolated noise. (3) In comparison to the manual calibration method, the crack parameter calculation method proposed in this paper can better complete the calculation of crack length, width, and area within an allowable margin of error. On the basis of this research, a windowing system for asphalt pavement crack detection, WSPCD1.0, was developed. It integrates the research results from this paper, facilitating automated detection and parameter output for asphalt pavement cracks.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Shandong Province

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3