Author:
Naveed M,Alrammal M,Bensefia A
Abstract
Abstract
Malware detection is a challenging and non-trivial task due to ever increase in several attacks and their sophistication level. Detection of such attacks demands the exploration of new approaches to generalize the attack patterns. One such approach is the use of Monte-Carlo simulations to train a reinforcement learning model. In this paper, we propose a self-adaptive Monte-Carlo simulation-based reinforcement model called Heuristic-based Generative Model (HGM), which generalizes the attack patterns in such a way that the new unknown attacks can be detected and flagged in real-time. The results show that HGM can detect a variety of malware with high accuracy.
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献