Affiliation:
1. West Virginia University, Morgantown, USA
2. Florida International University 8 Nanjing University of Posts and Telecommunications, Nanjing, China
3. Florida International University, Miami, FL, USA
Abstract
In the Internet age, malware (such as viruses, trojans, ransomware, and bots) has posed serious and evolving security threats to Internet users. To protect legitimate users from these threats, anti-malware software products from different companies, including Comodo, Kaspersky, Kingsoft, and Symantec, provide the major defense against malware. Unfortunately, driven by the economic benefits, the number of new malware samples has explosively increased: anti-malware vendors are now confronted with millions of potential malware samples per year. In order to keep on combating the increase in malware samples, there is an urgent need to develop intelligent methods for effective and efficient malware detection from the real and large daily sample collection. In this article, we first provide a brief overview on malware as well as the anti-malware industry, and present the industrial needs on malware detection. We then survey intelligent malware detection methods. In these methods, the process of detection is usually divided into two stages:
feature extraction
and
classification/clustering
. The performance of such intelligent malware detection approaches critically depend on the extracted features and the methods for classification/clustering. We provide a comprehensive investigation on both the feature extraction and the classification/clustering techniques. We also discuss the additional issues and the challenges of malware detection using data mining techniques and finally forecast the trends of malware development.
Funder
Scientific and Technological Support Project (Society) of Jiangsu
U.S. National Science Foundation
Chinese NSF
Publisher
Association for Computing Machinery (ACM)
Subject
General Computer Science,Theoretical Computer Science
Cited by
409 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献