The microanalysis of iron and sulphur oxidation states in silicate glass - Understanding the effects of beam damage

Author:

Hughes E C,Buse B,Kearns S L,Brooker R A,Di Genova D,Kilgour G,Mader H M,Blundy J D

Abstract

Abstract Quantifying the oxidation state of multivalent elements in silicate melts (e.g., Fe2+ versus Fe3+ or S2- versus S6+) is fundamental for constraining oxygen fugacity. Oxygen fugacity is a key thermodynamic parameter in understanding melt chemical history from the Earth’s mantle through the crust to the surface. To make these measurements, analyses are typically performed on small (<100 µm diameter) regions of quenched volcanic melt (now silicate glass) forming the matrix between crystals or as trapped inclusions. Such small volumes require microanalysis, with multiple techniques often applied to the same area of glass to extract the full range of information that will shed light on volcanic and magmatic processes. This can be problematic as silicate glasses are often unstable under the electron and photon beams used for this range of analyses. It is therefore important to understand any compositional and structural changes induced within the silicate glass during analysis, not only to ensure accurate measurements (and interpretations), but also that subsequent analyses are not compromised. Here, we review techniques commonly used for measuring the Fe and S oxidation state in silicate glass and explain how silicate glass of different compositions responds to electron and photon beam irradiation.

Publisher

IOP Publishing

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3