Abstract
AbstractThe lunar surface and interior are highly reducing, resulting in the virtually absence of ferric ion. However, recent studies suggest the presence of ferric iron in lunar samples, and in most cases they were found in amorphous silicates (e.g., glass beads) measured by TEM–EELS. In this work, we conducted a systematic TEM–EELS analysis on the iron valence states of Chang’e-5 impact glass beads. The Fe3+/ΣFe ratio of each silicate glass sample was determined from integral intensity of Fe L3 and L2 edge. The measurements show a positive correlation between the dwell time and Fe3+/ΣFe ratio, which reveals that ferric iron can be significantly produced by electron beam bombardment under routine analytical condition. The calculated Fe3+/ΣFe with short dwell times (≤ 20 ms) in our Chang’e-5 impact glass beads show no detectable inherent ferric iron, suggesting that the ferric iron is not ubiquitous as previously reported. It is obvious that a careful control of experiment conditions is critical to determine the inherent redox state of other beam-sensitive terrestrial and extraterrestrial samples.
Graphical Abstract
Funder
National Natural Science Foundation of China
the Key Research program of Chinese Academy of Sciences
the key research program of the Institute of Geology and Geophysics, CAS
Publisher
Springer Science and Business Media LLC
Subject
Space and Planetary Science,Geology
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献