Prediction of dynamic mooring responses of a floating wind turbine using an artificial neural network

Author:

Bjørni F A,Lien S,Midtgarden T Aa,Kulia G,Verma A,Jiang Z

Abstract

Abstract Numerical simulations in coupled aero-hydro-servo-elastic codes are known to be a challenge for design and analysis of offshore wind turbine systems because of the large number of design load cases involved in checking the ultimate and fatigue limit states. To alleviate the simulation burden, machine learning methods can be useful. This article investigates the effect of machine learning methods on predicting the mooring line tension of a spar floating wind turbine. The OC3 Hywind wind turbine with a spar-buoy foundation and three mooring lines is selected and simulated with SIMA. A total of 32 sea states with irregular waves are considered. Artificial neural works with different constructions were applied to reproduce the time history of mooring tensions. The best performing network provides a strong average correlation of 71% and consists of two hidden layers with 35 neurons, using the Bayesian regularisation backpropagation algorithm. Sea states applied in the network training are predicted with greater accuracy than sea states used for validation of the network. The correlation coefficient is primarily higher for sea states with lower significant wave height and peak period. One sea state with a significant wave height of 5 meters and a peak period of 9 seconds has an average extreme value deviation for all mooring lines of 0.46%. Results from the study illustrate the potential of incorporating artificial neural networks in the mooring design process.

Publisher

IOP Publishing

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3