A Damage Identification Approach for Offshore Jacket Platforms Using Partial Modal Results and Artificial Neural Networks

Author:

Guo Jiamin,Wu Jiongliang,Guo Junhua,Jiang ZhiyuORCID

Abstract

This paper presents a damage identification method for offshore jacket platforms using partially measured modal results and based on artificial intelligence neural networks. Damage identification indices are first proposed combining information of six modal results and natural frequencies. Then, finite element models are established, and damages in structural members are assumed by reducing the structural elastic modulus. From the finite element analysis for a training sample, both the damage identification indices and the damages are obtained, and neural networks are trained. These trained networks are further tested and used for damage prediction of structural members. The calculation results show that the proposed method is quite accurate. As the considered measurement points of the jacket platform are near the waterline, the prediction errors keep below 8% when the damaged members are close to the waterline, but may rise to 16.5% when the damaged members are located in deeper waters.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3