Analysis and structuring diagnostic large volume data of technical condition of complex equipment in transport

Author:

Vychuzhanin V V,Rudnichenko N R,Sagova Z,Smieszek M,Cherniavskyi V V,Golovan A I,Volodarets M V

Abstract

Abstract The paper presents the results of the classification analysis model for structuring of processed large volumes of heterogeneous diagnostic data about the technical state of complex equipment in transport development and research. Concept for the description and structuring of big data is proposed based on the formation of a metadata scheme using logical breakdown of all technical diagnostic data on the output variable - the technical condition of complex technical equipment in transport. A functional assessment of the technical condition complex technical system’s elements in transport is developed based on the application of methods for assessing structural and functional risks of failures. The article presents the results of assessing the accuracy of the input data sets classification using created decision trees models to effectively structuring and presenting the data in order to ensure that the procedures for their further analysis are performed. As a result of using the developed simulation model of structuring and presenting large heterogeneous diagnostic data volumes about the state of complex technical equipment in transport the time costs were reduced and the efficiency of analytical operations to study data for solving diagnostic problems and predicting complex system’s technical condition was improved.

Publisher

IOP Publishing

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3