A Comparative Study of Adhesion Mechanism for Wall Climbing Robots: Ring Magnet vs. Block Magnets

Author:

Jose Jaise,Sugin Elankavi R,Dinakaran D,Kuppan Chetty R M,Ramya M M

Abstract

Abstract Magnetic adhesion is widely used in wall climbing robots on ferromagnetic surfaces. The Ring and block Neodymium magnets provide the necessary adhesion in permanent magnet-based climbing robots. In this article, the effectiveness of ring and block magnets are analysed using FEMM. for various magnet configurations. The adhesion force generated by ring and block magnets of a similar volume is compared and analysed. The results showed that the adhesion of ring magnets increases with the thickness of magnets. The maximum adhesion achieved in various ring magnets was compared with the adhesion generated by the arrangement of block magnets for two standoff distances and it was found that the adhesion generated by the block magnets were better in both cases. The ring magnets have constant standoff distance as per the rubber coating used and this enables them to operate seamlessly on irregular surfaces while the block magnet configurations provide excellent payload capabilities. In summary, numerical simulation results provided an understanding of the areas where the ring magnets can be used and the areas where the block magnets serve the purpose better.

Publisher

IOP Publishing

Subject

General Medicine

Reference19 articles.

1. A survey of climbing robots: Locomotion and adhesion;Chu;International journal of precision engineering and manufacturing,2010

2. A survey of wall climbing robots: recent advances and challenges;Nansai;Robotics,2016

3. A survey on pneumatic wall-climbing robots for inspection;Brusell

4. Space climbing robot feet with microarray structure based on discrete element method;Hou;International Journal of Robotics and Automation,2019

5. Adhesion technologies of bio-inspired climbing robots: A survey;Chattopadhyay;International Journal of Robotics and Automation,2018

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Structure Design and Analysis of a Wall-Climbing Robot for Removing Stains on the Side Shell Plate;2023 9th International Conference on Fluid Power and Mechatronics (FPM);2023-08-18

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3