Author:
Mramor K,Vertnik R,Šarler B
Abstract
Abstract
Macrosegregation presents a considerable defect in the continuous casting of billets and can critically affect the final properties of the product. The numerical modelling can help to predict and better understand the segregation and flow patterns inside the mould. The process is modelled with a physical model described by a set of conservation equations describing the t heat transfer, turbulence, fluid flow, solidification and segregation. A two-equation low-Re k-epsilon model and Abe-Kondoh-Nagano closures are used to close governing equations in this incompressible fluid flow example. The Boussinesq approximation is applied to account for the thermo-solutal buoyancy effects, and the Darcy approximation is applied for the description of the flow through the porous mushy zone. On a microscale, a lever rule solidification model is used to couple liquid fraction, temperature and concentration. The three-dimensional model is solved with the method based on local collocation with multiquadric radial basis functions on seven-nodded subdomains. The aim of this contribution is to explore the three-dimensional macrosegregation patterns of 0.51 wt% carbon steel in the solidified shell of the steel in the mould.
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献