Assessment of URANS-Type Turbulent Flow Modeling of a Single Port Submerged Entry Nozzle (SEN) for Thin Slab Continuous Casting (TSC) Process

Author:

Vakhrushev Alexander,Karimi-Sibaki Ebrahim,Wu Menghuai,Ludwig Andreas,Nitzl Gerald,Tang Yong,Hackl Gernot,Watzinger Josef,Bohacek Jan,Kharicha Abdellah

Abstract

AbstractThe numerical methods based on the unsteady Reynolds-averaged Navier–Stokes (URANS) equations are robust tools to model the turbulent flow for the industrial processes. They allow an acceptable grid resolution along with reasonable calculation time. Herein, the URANS approach is validated against a water model experiment for the special single port submerged entry nozzle (SEN) design used in the thin slab casting (TSC) process. A 1-to-2 under-scaled water model was constructed, including the SEN, mold, and strand Plexiglas segments. Paddle-type sensors were instrumented to measure the submeniscus velocity supported by videorecording of the dye injections to provide both qualitative and quantitative verification of the SEN flow simulations. Two advanced URANS-type models (realizable k–ε and shear stress transport k–ω) were applied to calculate velocity pattern on meshes with various resolutions. An oscillating single jet flow was detected in the experiment, which the URANS simulations initially struggled to reflect. The dimensionless analysis of the mesh properties and corresponding adjustment of the boundary layers inside the SEN allowed to resolve the flow pattern. The performed fast Fourier transform (FFT) verified a good numerical prediction of the flow frequency spectrum. The corresponding simulation strategy is proposed for the industrial CC process using the URANS approach.

Funder

Montanuniversität Leoben

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3