Numerical Investigation of Continuous Damping of The Semi-Active Suspension System for Passenger Car

Author:

Ahmed M R,Yusoff A R,Romlay F R M

Abstract

Abstract The suspension of the car is considered an important element in the vehicle. The primary function of the suspension system is to isolate the vehicle structure from shocks and vibration due to irregularities of the road surface. There are two main objectives need to be satisfied which are: ride comfort and road handling. Ride comfort is inversely proportional to the absolute acceleration of the vehicle body, while the road handling is linked to the relative displacement between the vehicle body and the tires. This paper presented an attempted to enhance the performance of the shock absorber by developing a model of continuously variable damping (CVD). To evaluate the effect of the developed semi-active shock absorber on the dynamic behaviour of the vehicle, the model was analyzed and compared with the passive and On/Off sky-hook control strategy in the quarter car using two different types of road (random excitation, bumpy) as input to the quarter car model. Force hysteresis loop with different sets of orifice diameter was generated. The result indicates the CVD shows a reduction in both body acceleration and vertical displacement contrasting with passive and On/Off sky-hook 73.4% and 53.8% respectively and also the selling time by 79% and 59% for a bumpy road. This considered an improvement toward the ride comfort and vehicle stability. The simulated results for the quarter car model are shows similar trends and within range when compared with reference research.paper.

Publisher

IOP Publishing

Subject

General Medicine

Reference36 articles.

1. A combined nonlinear and hysteresis model of shock absorber for quarter car simulation on the basis of experimental data;Barethiye;Eng. Sci. Technol. Int J,2017

2. Semi-active control of tracked vehicle suspension incorporating magnetorheological dampers;Ata;Veh. Syst. Dyn,2017

3. Analysis of suspension with variable stiffness and variable damping force for automotive applications;Jugulkar;Adv. Mech. Eng,2016

4. Experimental study and analytical model of bleed valve orifice influence of a high-performance shock absorber on vehicle dynamics;Chacón;Adv. Mech. Eng,2017

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3