Flexural response of glass/epoxy composites to thermal shocks and conditioning environment in varying loading rate

Author:

Shrivastava Ruchir,Singh K. K.

Abstract

Abstract The structural integrity of composites faces severe challenge in the form of environmental extremes. Therefore, its performance in those cases were of great interest. In the present work, flexural strength of glass/epoxy composites were analysed in the environment of thermal shock generated by cryogenic exposure as well by thermal conditioning. Four cases were chosen, room temperature (RT), cryogenic conditioning (LN), thermal conditioning below (BG) and above glass transition temperature (AG). The exposure time for all the environments was kept constant at 24 hours. These responses are investigated with two sets of loading rates (i) 1 mm/minute and (ii) 10 mm/min. The experimental results indicate that; all three scenarios deeply impact the flexural response of the specimen. The first set experiences changes in flexural strength, strain, and chord modulus by (2.75, -8.52, 11.32), (21.36, 39.75, -6.47), (-35.8, -11.37, -22.94) % with LN, BG and AG condition respectively. Moreover, with high rate of loading these responses change by (-23.89, -28.41, -5.17), (-37.45, -43.56, -1.86), (-19.4, -27.46, 16.37) % respectively. The prolonged exposure indicates a strain hardening phenomenon in LN specimen, which improves the flexural strength with a 1 mm/min loading rate. However, this plasticization of the specimen was unable to bear the load at an elevated rate of loading, and therefore a loss in all the properties is seen with a 10 mm/min loading rate. Therefore, it is anticipated that the properties will further deteriorate with a higher rate of loadings.

Publisher

IOP Publishing

Subject

General Medicine

Reference16 articles.

1. Degradation of basalt fiber–reinforced polymer bars in seawater and sea sand concrete environment;Sharma;Adv. Mech. Eng.,2020

2. Effect of stacking sequence on micro-cracking in a cryogenically cycled carbon/bismaleimide composite;Bechel;Compos. Part A Appl. Sci. Manuf.,2003

3. Fracture toughness of transverse cracks in graphite/epoxy laminates at cryogenic conditions;Choi;Compos. Part B Eng.,2007

4. Novel radiation-resistant glass fiber/epoxy composite for cryogenic insulation system;Wu;J. Nucl. Mater.,2010

5. Interlaminar fracture toughness characterization of laminated composites: a review;Shrivastava;Polym. Rev.,2019

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3