Influence of fiber areal density on mechanical behavior of basalt fiber/epoxy composites under varying loading rates: An experimental and statistical approach

Author:

Biswas Rahul1,Sharma Nisha1ORCID,Singh Kalyan Kumar1

Affiliation:

1. Department of Mechanical Engineering Indian Institute of Technology (ISM) Dhanbad India

Abstract

AbstractThe stress–strain characteristics and failure behavior of composites are strain rate dependent and affected by the fiber areal density. To elucidate the combined influence of areal density and strain rate on the strength of basalt fiber‐reinforced polymer composites (BFRP), an experimental study was conducted on BFRP laminates of two different fiber areal densities, that is, 380 GSM and 200 GSM, having distinct stacking sequence under three different loading rates. Failure modes, failure strength, and Weibull parameters were used to characterize the experimental outcomes. The experiment was carried out to investigate the mechanical responses and associated failure modes at strain rates ranging from quasi‐static 0.1 mm/min to a high strain rate of 10 mm/min. It has been demonstrated that there is a substantial correlation between the fiber areal density, loading rate, and stacking order of BFRP laminates and the increase in maximum flexural strength and interlaminar shear strength. For an increase in the fiber areal density from 200 GSM to 380 GSM flexural strength is increased by 18%–30%, while ILSS strength is increased by 30%–52%. Based on the finding, the asymmetric type‐2 laminate exhibits better properties than the symmetric and asymmetric type‐1 laminates due to the presence of more (0°/90°) laminae at the tensile side of the laminate. Inferring the mechanical characteristics of composite materials and their relationship to strain rate from experimental data required a statistical technique. The statistical analysis and experimental findings demonstrate that the shape parameter and linear coefficient are not reliant on the strain rate.

Publisher

Wiley

Subject

Materials Chemistry,Polymers and Plastics,General Chemistry,Ceramics and Composites

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3