Generic Architecture for the Automatic Parametrization of Production Machine Assembly Programs

Author:

Stephan Philipp,Fisch Jessica,Can Alperen,Heimann Oliver,Thiele Gregor,Krüger Jörg

Abstract

Abstract In a high-mix low volume production environment, time to market is a key factor. However, one bottleneck lies in the often times manual parametrization of machines for new or modified designs. A truly flexible manufacturing environment therefore requires a continuous data flow from the design stages to the shop floor. This paper presents a concept for the automated parameterization of machines at a large automotive plant. Therefore, this paper initially discusses the results of a stakeholder analysis. The stakeholders comprise of different departments related to the product design and manufacturing processes. The requirements resulting from the interviews conducted with the stakeholders are grouped and ordered by priority. Secondly a general architecture for the control interface is presented. It includes multiple submodules, which model the continuous data flow between the departments and the production systems. The first main step of the data flow is the transformation of the information which is presented in various styles depending on the source departments to structured and standardized data. Thereafter machine parameters are generated automatically by a submodule using the structured input data and inference rules. Finally, the architecture supports the automatic transfer of the machine readable output data to the assembly line. To test the architecture a prototype comprising of more than 100 robots in a live production environment is implemented. It allows for a continuous data flow from the design and productions planning department to the robots. This enables a flexible process control, which up to today has supported the fast roll out of more than 100 new product variants. In contrast to the conventional manual setup of the machines for operation, the prototype was able to show that the monetary and time expenditure could be reduced by 95 percent.

Publisher

IOP Publishing

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3