Anhydrous weight loss kinetics model development for torrefied green waste

Author:

Jamin N A,Samad N A F A,Saleh S

Abstract

Abstract One of the compositions of municipal solid waste (MSW) is green waste (GW) that collected from landscaping, garden, yard and trimming waste. GW has potential in becoming a biomass feedstock, but poses some drawbacks such as high moisture content, low heating value, high O/C and H/C ratios. Implementation of torrefaction as pre-treatment will improve the GW properties. During torrefaction, biomass is decomposed and leads to anhydrous weight loss (AWL). The estimation model for AWL is significant to study thermal degradation of GW. The aim of this work is to study two steps reaction in series for AWL prediction. GW were torrefied under inert condition at 240-300°C, 10°C/min heating rate and 30 minutes holding time using thermogravimetric analysis (TGA). Two steps reaction series model named Di Blasi and Lanzetta with extended non-isothermal phase is used in developing the AWL model. From initial guess, the parameters of activation energy and kinetic constant are adjusted to fit the calculated AWL to experimental AWL data by applying nonlinear optimization ‘lsqcurvefit’ routine in Matlab. The estimated kinetic parameters been used for AWL model and later being compared to experimental data from TGA. Good agreement obtained between experimental and model data indicating good kinetic parameters estimation

Publisher

IOP Publishing

Subject

General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3